
On Teaching Programming with Nondeterminism ∗

Giora Alexandron Michal Armoni Michal Gordon David Harel

Weizmann Institute of Science, Rehovot, 76100, Israel
{giora.alexandron, michal.armoni, michal.gordon, david.harel@weizmann.ac.il}

ABSTRACT
Non-determinism (ND) is a fundamental concept in com-
puter science, and comes in two main flavors. One is the
kind of ND that appears in automata theory and formal lan-
guages. The other, which we term operative, appears in non-
deterministic programming languages and in the context of
concurrent and distributed systems. We believe that it is
important to teach the two types of ND, especially as ND
has become a very prominent characteristic of computerized
systems. Currently, students are mainly introduced to ND of
the first type, which is known to be hard to teach and learn.
Our findings suggest that learning operative ND might be
easier, and that students can reach a significant understand-
ing of this concept when it is introduced in the context of
a programming course that deals with a non-deterministic
programming language like the language of Live Sequence
Charts (LSC). Based on that, we suggest teaching operative
ND in the context of concurrent and distributed program-
ming, a topic which is covered by a new knowledge area that
was added in Computer Science Curricula 2013.

Categories and Subject Descriptors
K.3.2 [COMPUTERS AND EDUCATION]: Computer
and Information Science Education—Computer science ed-
ucation

General Terms
Languages

Keywords
Non-determinism, constructionism

1. INTRODUCTION
The concept of non-determinism (ND) was first intro-

duced to computer science (CS) by Rabin and Scott in their
work on non-deterministic finite automata [19], for which

∗This research was partially supported by an Advanced Re-
search Grant from the European Research Council (ERC)
under the European Community’s 7th Framework Pro-
gramme (FP7/2007-2013). The work of the first author was
supported by a grant from the Azrieli Foundation.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
WiPSCE ’13, November 11–13, 2013, Aarhus, Denmark
Copyright 2013 ACM 978-1-4503-2455-7/11/13 ...$15.00.

they were given the Turing Award. In Schwill’s work on
fundamental ideas of CS [20], it is listed under the cate-
gory of programming concepts. As a fundamental idea, ND
appears in various domains and contexts. In CC2001 [15]
it is covered mainly in the elective unit on Automata the-
ory (AL7). At the time that curriculum was developed, ND
was a much less prominent characteristic of computerized
systems. This has changed, as reflected, for example, in a
new knowledge area on parallel and distributed computing
that was added in CC2013 [16]. The rationale underlying
this new unit is that “Given the vastly increased importance
of parallel and distributed computing, it seemed crucial to
identify essential concepts in this area and to promote those
topics to the core” [pg. 32]. ND is one of these essential
concepts.

Some researchers view different appearances of ND as
manifestations of the same thing (this viewpoint is expressed
for example in [2, 9]), but they can also be seen as dif-
ferent types of ND. We distinguish between two different
types of ND. The first is the one that appears in the con-
text of automata theory and formal languages (through non-
deterministic automata). On this type of ND there is a pre-
determined criterion for success, according to which it can
be decided whether a specific computation is accepted or
not. The second type of ND appears in the context of con-
current and asynchronous systems, and in non-deterministic
programming languages. Examples of such languages in-
clude Dijkstra’s guarded commands [8]; logic programming
languages, such as Prolog, usually have a non-deterministic
semantics (though Prolog’s search rule actually makes its
behavior deterministic); some modeling languages, such as
Promela (which is mainly used for model checking), or scenario-
based programming languages, such as Live Sequence Charts
(LSC) [7] (which is mainly a language for reactive systems
development), also have a non-deterministic semantics. At
the core of this type of ND lies the idea of true don’t care,
which means that there is a-priori no preference and all the
possible computations are equally good. We refer to this
second type as operative ND.

In practice, it seems that students are usually introduced
to ND of the first type, in the context of automata theory
and formal languages [3]. This type of ND is known to be
difficult to teach and learn [2, 4, 5]. With respect to the
learning of operative ND, Ben-David Kolikant [17] identi-
fies this concept as the main source of difficulty in learning
concurrent programming.

We believe that it is important to introduce students to
both types of ND. Thus, we suggest to embed the teach-
ing of operative ND in a course that involves concurrent
and asynchronous programming with non-deterministic pro-
gramming languages like LSC. The advantage of this ap-
proach is that it does not require adding an isolated topic
to the curriculum. It can be implemented by extending a
programming course, which stands on its own merit, with a

71

new context. This suggestion is based upon our experience
with teaching LSC to 12th grade high school students, and
upon the results of the study conducted on par with the
teaching process. The results show that after the course,
the students showed a significant understanding of opera-
tive ND, on a level that allowed them to create and execute
programs that included ND in various scopes and degrees of
complexity.

2. LIVE SEQUENCE CHARTS
In this section we briefly describe the language of Live-

Sequence Charts (LSC) and its development environment,
Play-Engine. The language was originally introduced in [7]
and was extended significantly in [12] and [13]. LSC is a vi-
sual specification language for reactive system development.
LSC and Play-Engine are based on three main concepts,
which we now briefly review.

2.1 Scenario-based programming
LSC introduces a new paradigm, termed scenario-based

programming, implemented in a language that uses visual,
diagrammatic syntax. The main decomposition tool that
the language offers is the scenario. In the abstract sense,
a scenario describes a series of actions that compose a cer-
tain functionality of the system, and may include possible,
necessary or forbidden actions.
Syntactically, a scenario is implemented in a live sequence

chart. An example is shown in Figure 1.

Figure 1: LSC chart

A chart is composed of two parts – the pre-chart, and the
main-chart. The pre-chart is the upper dashed-line hexagon,
and it is the activation condition of the chart. In case that
the events in the pre-chart occur, the chart is activated.
Execution then enters the main chart. This is the lower
rectangle, which contains the execution instructions. The
vertical lines represent the objects, and the horizontal arrows
represent interactions between them. The flow of time is top
down. The chart in the example describes a simple scenario
taken from the implementation of a cruise control. Once the
user presses the brake pedal, the cruise unit releases control
of the brake and the accelerator, and then turns it self off.

2.2 The play-in/play-out methods
LSC is supplemented with a method for building the scenario-

based specification over a real or a mock-up GUI of the sys-
tem – the play-in method, which is implemented in Play-
Engine. With play-in, the user specifies the scenarios in a
way that is close to how a real interaction with the system
occurs, by playing with the GUI. For more details, see [11,
12, 13].
The play-out method (originally introduced in [13]), also

implemented in Play-Engine, is the underlying execution en-
gine that makes LSC (which is a declarative programming

language) directly executable/simulatable. For more details
see [12].

2.3 Non-determinism in LSC
LSC is a non-deterministic programming language. At its

core, the kind of ND that is inherent in the language stems
from the idea of don’t care: At each point of the compu-
tation, there are some branches that can be taken, where
all the branches are equally good. To achieve that, the lan-
guage supplies various abstraction mechanisms that allow
to describe aspects of the system behavior without being
forced to introduce determinism into the implementation,
when it is not derived from the requirements. Due to lack of
space, we do not review these mechanisms here. As a model
of computation, LSC also includes parts that implement an
asynchronous, thus non-deterministic, semantics.

3. THE STUDY
Our research question was how high-school students un-

derstand operative ND after learning the non-deterministic
language of LSC. The context of the study was a forty-five
hours semestrial course given to nineteen 12th grade (age:17-
18) high-school students majoring in CS. Students’ experi-
ence in CS included two introductory computing courses, a
course on computer organization and assembly languages,
and a course on computational models (in order to make
space for the LSC course, this was a shortened version, which
did not include non-deterministic models). In none of these
courses they were introduced to the concept of ND. The
LSC course was a mandatory course and was developed and
executed as a pilot course aimed at teaching scenario-based
programming and reactive systems development with LSC.
The course structure was arranged according to the “zipper
principle” [10], with theoretical lectures followed by hands-
on experience in the lab. The last few lessons were devoted
for developing final projects in groups. Students’ projects
included implementing a memory game (“Simon”), model-
ing the behavior of an elevator, etc. The students were also
given written exams in which they were required to write,
comprehend and modify LSC programs. The data that we
collected included the projects, exam questions, class notes,
and post-interviews held with representative students.

3.1 Assessing students’ understanding
To assess students’ learning, we used a two-dimensional

taxonomy. Each category in the taxonomy represented a cer-
tain level of learning. By analyzing the data, we estimated
the extent to which each level of learning was achieved. The
two-dimensional taxonomy is built upon two existing tax-
onomies. The vertical axis is based upon Bloom’s taxonomy
in its revised form [1], and the horizontal axis is based upon
the SOLO taxonomy [6]. From Bloom’s taxonomy we chose
to concentrate on one intermediate category (Applying) and
one higher category (Creating). From the SOLO taxonomy
we chose to focus on the three intermediate categories (out
of five): Unistructural, Multistructural, and Relational. The
operationalization of the categories with respect to LSC is
given on the next section. This scheme is a variation of the
combined taxonomy suggested by Meerbaum-Salant et al.
[18] for assessing students’ learning of CS concepts. The
taxonomy is presented in table 1, together with the type of
analysis that was used on each category.

3.1.1 Operationalization
We follow the interpretation suggested in [18], and adapt

it to LSC. This yields the following operative definitions for
the atomic components of the two-dimensional taxonomy.
From Bloom’s taxonomy:
* Applying: The ability to execute algorithms or code. In

72

Unistructural Multistrcutural Relational
Applying Quantitative + Quantitative + Qualitative

Qualitative Qualitative
Creating Quantitative + Qualitative Qualitative

Qualitative

Table 1: The taxonomy and the analysis conducted on each
category

the context of LSC, the ability to track and simulate pieces
of code that contain a non-deterministic element.
* Creating: The ability to plan and produce programs or
algorithms. In the context of LSC, this means to imple-
ment an LSC program (or pieces of it) that contains a non-
deterministic element/s.
From the SOLO taxonomy:
* Unistructural: A local perspective. The interpretation to
LSC means acting in the scope of a single chart.
* Multistructural: A perspective that incorporate multiple
LSC charts.
* Relational: A holistic perspective, referring the whole pro-
gram or a property of it.
For example, the interpretation of Creating/Multistructural

is creating a program that contains ND which involves mul-
tiple charts.

3.2 Findings
Below we describe a subset of the findings, and we intend

to give a complete report elsewhere. From the quantitative
analysis, we present a table summarizing the quantitative re-
sults, and exemplify the analysis with the category of Apply-
ing/Unistructural. From the qualitative analysis, we present
the findings related to category of Creating/Multistructural.

3.2.1 Quantitative findings
The quantitative analysis was based on the exam ques-

tions, and was conducted as follows. For each category that
was quantitatively assessed, we first scanned the relevant
questions in the exams, and mapped into this category the
questions that required the level of understanding that this
category measures (overall, we used four questions. Two for
the category of Applying/Unistructural, and one for each of
the other two categories that were quantitatively assessed).
Then, students’ answers to these questions were graded,
with the grades referring only to the non-deterministic el-
ement of the question. Finally, the category was given the
average score of the answers belonging to it.
The process was validated as follows. The classification

of questions into categories was validated by an expert who
was not part of the research team. To verify the grading,
a sample of 33% of students’ answers was graded indepen-
dently by two of the authors, and the grades were compared.
On both processes, the level of agreement was high (above
90%).
The quantitative findings are exemplified by the analysis

of the category of Applying/Unistructural, which is shown
below. Table 2 summarizes the quantitative results.
Applying/Unistructural. The question contained a

chart describing some scenario (taken from the specification
of a calculator). The chart is shown in Figure 2. Due to
the semantics of LSC, there is no mandatory order between
the two actions X1:=Key.Value and X2:=Key.Value located
in the lower rectangle. The students were requested to i)
identify whether the code can be executed in several orders,
and ii) If so, to supply two possible orders. The two sub-
questions got the same weight. This question is classified as
Applying because it requires the students to mentally sim-
ulate a given algorithm, and as Unistructural because this
algorithm resides in the scope of a single chart.

Figure 2: Applying/Unistructural

Summary of the quantitative results. Table 2 sum-
marizes the score calculated for each category. N stands
for the number of answers considered. Since some of the
questions that we used were elective, each questions was
answered by a different subset of the students (this might
induce some bias into the results, but since we are interested
in the trend, it was more important for us to include as much
data as possible). As can be seen, students’ achievement on
these categories are satisfactory.

Unistructural Multistructural Relational
Applying 83%, N=26 76%, N = 18
Creating 100%, N=10

Table 2: The quantitative results

3.2.2 Qualitative findings
This analysis was based on students’ final projects, on

post-interviews held with four representative students (one
student per group), and on class notes. The students were
chosen more or less at random, based on their availability.
The qualitative analysis was validated with an expert who
was not part of the research team. The expert was requested
to analyze in depth the data concerning one of the projects,
map it into the appropriate category/ies of the taxonomy,
and explain the mapping. The expert’s mapping was simi-
lar to ours, but she backed it up with different arguments.
Overall, the process reinforced our confidence in the find-
ings, and enriched them with another perspective. Below
we exemplify the qualitative analysis with the results of the
analysis of the category of Creating/Multistructural.

Creating/Multistructural: Into this category we as-
cribe design and/or coding of program modules that contain
multiple LSC diagrams, and in which ND plays an important
role. An example is given in the project of student #1 and
her teammates. This group modeled a coffee machine. In
this project ND served as an abstraction means, in the sense
that it allowed the students to define simultaneous scenarios
without committing to specific execution order between the
scenarios in places where no specific order was required. For
example, the project included two diagrams that are acti-
vated simultaneously as response to a certain system event.
Once the activation event is launched, either of the charts
can progress, which means that the interleaving of the ex-
ecuted events is non-deterministic. The order of execution
can vary between runs, and the program is correct under
all the possible orders. The students relied on the fact that
the scenarios can progress simultaneously, that there is no
mandatory order between them, and that this does not affect
the correctness of the program (I=Interviewer, S=Student):

“ I: So both scenarios can progress simultaneously?

73

S: Yes.
I: And does it matter?
S: I don’t think so.
I: but is it something that you considered? Did you think
whether the charts will be activated together or not?
S: Yes, but they can be activated together without inter-
fering each other [...]”

So, we see that when programming with LSC programmers
learn to use ND as an abstraction means, and that the ND
built into LSC allows them to ignore unnecessary implemen-
tation details such as the order of execution. This seems to
reduce the cognitive load involved in programming.
However, we also saw evidence of difficulties in dealing

with ND on this level. For example, student #2 showed that
he was able of mentally simulating ND in the context of sev-
eral charts (this example belongs to Applying/Multistructural,
which is not shown here), but he then mentioned that ac-
tually only one of these non-deterministic behaviors was de-
sired, and that he was not sure how to discard the other
ones. So, this is actually a difficulty in removing ND and
creating a deterministic code, and this is a potential issue
that can emerge when using a language in which ND is the
default behavior.

3.2.3 Summary of findings
To summarize the findings, we saw that:

i) Students were able of understanding non-deterministic
systems on a level that allowed them to mentally simulate
parts of the systems or the systems as a whole, in a way that
considered the non-deterministic element of the system. On
this level we saw problems when the ND stemmed from the
interleaving of multiple charts.
ii). With regarding to the ability of creating non-deterministic
systems, we found that:
a. Almost all the students were able of creating ND in the
local scope of a specific module, or in the wider scope of
several modules. In this context ND was usually used as an
abstraction mechanism, which enabled hiding unnecessary
implementation details as the order of execution.
b. Some of the students demonstrated the ability to create
ND in the scope of a whole system. However, we saw some
evidence of students trying to avoid dealing with ND on this
level when it was associated with a high-level of concurrency.

4. DISCUSSION AND CONCLUSIONS
Teaching operative ND in the context of a programming

course that includes hands-on experience of building and ex-
ecuting systems, is inline with the ideas of constructionism
[14]. As operative ND appears in LSC in different ways, us-
ing this language provides diverse opportunities for learning
the concept. Furthermore, since LSC is non-deterministic in
its nature, using it creates a learning environment in which
ND is the “normal situation”, as suggested by Dijkstra ([9],
p. xv). Together, these help to construct a pedagogical
framework that seems to promote the learning of operative
ND.
Following this, and due to the increased importance of

ND in current computing, we believe that operative ND can
and should be taught on the level of high-school and pre-
graduate programs. As noted, this does not require opening
the curriculum, but can be done by adding a new context to
a course on concurrent and asynchronous programming.

5. ACKNOWLEDGMENTS
The authors would like to thank Nir Eitan, Ronit Ben-

Bassat Levy, Zehava Levin and Rivka Taub for their help in
conducting this research.

6. REFERENCES
[1] L. Anderson, D. Krathwohl, and B. Bloom. A

Taxonomy for Learning, Teaching, and Assessing: a
Revision of Bloom’s Taxonomy of Educational
Objectives. Longman, 2001.

[2] M. Armoni and M. Ben-Ari. The concept of
nondeterminism: its development and implications for
teaching. SIGCSE Bull., 41(2):141–160, June 2009.

[3] M. Armoni and J. Gal-Ezer. Introducing
nondeterminism. Journal of Computers in
Mathematics and Science Teaching, 25(4):325–359,
October 2006.

[4] M. Armoni and J. Gal-Ezer. Non-determinism: An
abstract concept in computer science studies.
Computer Science Education, 17(4):243–262, 2007.

[5] M. Armoni, N. Lewenstein, and M. Ben-Ari. Teaching
students to think nondeterministically. SIGCSE Bull.,
40(1):4–8, Mar. 2008.

[6] J. B. Biggs and K. F. Collis. Evaluating the Quality of
Learning: The SOLO Taxonomy (Structure of the
Observed Learning Outcome). Academic Press, 1982.

[7] W. Damm and D. Harel. LSCs: Breathing Life into
Message Sequence Charts. Form. Methods Syst. Des.,
19(1):45–80, 2001.

[8] E. W. Dijkstra. Guarded commands, nondeterminacy
and formal derivation of programs. Commun. ACM,
18(8):453–457, 1975.

[9] E. W. Dijkstra. A Discipline of Programming.
Prentice-Hall, Englewood Cliffs, NJ, USA, 1976.

[10] J. Gal-Ezer, C. Beeri, D. Harel, and A. Yehudai. A
High School Program in Computer Science. Computer,
28(10):73–80, Oct. 1995.

[11] D. Harel. From Play-In Scenarios to Code: An
Achievable Dream. In T. Maibaum, editor,
Fundamental Approaches to Software Engineering,
volume 1783 of Lecture Notes in Computer Science,
pages 22–34. Springer Berlin / Heidelberg, 2000.

[12] D. Harel and R. Marelly. Come, Let’s Play:
Scenario-Based Programming Using LSC’s and the
Play-Engine. Springer-Verlag New York, Inc.,
Secaucus, NJ, USA, 2003.

[13] D. Harel and R. Marelly. Specifying and executing
behavioral requirements: the play-in/play-out
approach. Software and Systems Modeling (SoSyM),
2(2):82–107, 2003.

[14] I. E. Harel and S. E. Papert. Constructionism. Ablex,
Westport, CT, USA, 1991.

[15] IEEE/ACM. Computing Curricula 2001: Computer
Science Volume – Final Report, 2001.

[16] IEEE/ACM. Computer Science Curricula 2013
(Ironman Draft), 2013.

[17] Y. B.-D. Kolikant. Learning concurrency: evolution of
students’ understanding of synchronization. Int. J.
Hum.-Comput. Stud., 60(2):243–268, Feb. 2004.

[18] O. Meerbaum-Salant, M. Armoni, and M. M. Ben-Ari.
Learning computer science concepts with scratch. In
Proceedings of the Sixth international workshop on
Computing education research, ICER ’10, pages 69–76,
New York, NY, USA, 2010. ACM.

[19] M. O. Rabin and D. Scott. Finite automata and their
decision problems. IBM Journal of Research and
Development, 3(2):114–125, 1959.

[20] A. Schwill. Fundamental Ideas of Computer Science.
Bull. European Assoc. for Theoretical Computer
Science, 53:274–295, 1994.

74

